Abstract: With the completion of Deep Underground Neutrino Experiment (DUNE) in the next decade, the continuation of this exciting era in neutrino physics is assured. Deep underground, based on Liquid Argon Time Projection Chamber (LArTPC) technology, with a total fiducial mass of 40-kton and utilizing the high-intensity neutrino beam produced at the Long Baseline Neutrino Facility (LBNF) at Fermilab, the DUNE program is rich and diverse. The center of this program is the measurement of the charge-parity violating phase (δCP), a free parameter in the PMNS matrix, which describes the relationship between neutrino propagating eigenstates and interaction eigenstates. This parameter can be measured by a sensitive measurement of neutrino interference and may be the primary source of the matter-antimatter asymmetry in the universe. DUNE is also sensitive to the neutrino ensemble from core-collapse supernovae, providing a unique tool to study astrophysical phenomena. In both situations, the neutrino source (supernova or LBNF), propagation and detection (LArTPC in DUNE) define a quantum system. Understanding and simulating this phenomenologically rich quantum system is important to the success of the DUNE program and opens up additional avenues of investigation.