We also find that the movement approaches a steady-state non-thermal equilibrium with effective temperature, T_eff=〖6×T〗_cell=6×310 K. Also, the minimum “uncertainty principle” limit, ΔQ⋅ϵ^2≥2k_B T_eff, where ΔQ=T_eff ΔS is the heat entropy needed to achieve movement with a normalized precision 〖ϵ(x)〗^2≡((〈x^2 〉-〈x〉^2))⁄〈x〉^2 . This uncertainty limit sets the minimum heat energy needed to achieve a given precision in any physical operation. In the context of intercellular molecular transport, a more uniform motion of the cargo requires a greater expenditure of energy.
Events
We also find that the movement approaches a steady-state non-thermal equilibrium with effective temperature, T_eff=〖6×T〗_cell=6×310 K. Also, the minimum “uncertainty principle” limit, ΔQ⋅ϵ^2≥2k_B T_eff, where ΔQ=T_eff ΔS is the heat entropy needed to achieve movement with a normalized precision 〖ϵ(x)〗^2≡((〈x^2 〉-〈x〉^2))⁄〈x〉^2 . This uncertainty limit sets the minimum heat energy needed to achieve a given precision in any physical operation. In the context of intercellular molecular transport, a more uniform motion of the cargo requires a greater expenditure of energy.