It details the development of low-noise electronic feedback systems for laser frequency locking and magnetic field stabilization, engineered to support stable and low-noise experimental operation. It further introduces the design, implementation, and noise characterization of narrow-linewidth laser systems driving Rydberg-level transitions, which underpin high-fidelity two-qubit gates via the Rydberg blockade mechanism.
The work also establishes the electric quadrupole transition in cesium as a powerful tool for state-selective, background-free quantum state readout, achieving a classification fidelity of 0.9993 and an atom survival probability of 0.995. Additionally, it demonstrates that laser cooling on this transition effectively reduces post-optical pumping atom temperatures to 5.4 uK.
Collectively, these results advance the frontier of robust, high-performance control in cesium-based quantum computing and significantly expand the capabilities of neutral atom architectures.